Diogo F. Soares
Invited Assistant Professor • Researcher
Diogo F. Soares
LASIGE and Department of Informatics, Ciências Ulisboa
E-mail: dfsoares(at)ciencias.ulisboa.pt
Office C6.3.38 @Ciências ULisboa
Short Bio. Diogo F. Soares is an Invited Assistant Professor at the Department of Informatics, Faculty of Sciences, University of Lisbon, and a researcher at LASIGE, contributing to the Health and Biomedical Informatics and Data and Systems Intelligence research lines. He teaches courses in Programming and Data Science and holds a PhD in Informatics and an MSc in Data Science from the University of Lisbon. His research focuses on patient-centered machine learning, with involvement in European and National funded projects. His primary research interests include Data Mining, Machine Learning, Unsupervised Learning Algorithms, and Biomedical Informatics.
MSc or PhD Student?
Do you want to do research in machine learning to improve patients quality-of-life? Reach me out!
Check here the MSc proposals for 24/25
Publications
Journal articles
-
Soares, D. F., Henriques, R., & Madeira, S. C. (2024). Comprehensive assessment of triclustering algorithms for three-way temporal data analysis. Pattern Recognition, 110303.
-
M. Amaral, D., Soares, D. F., Gromicho, M., de Carvalho, M., Madeira, S. C., Tomás, P., & Aidos, H. (2024). Temporal stratification of amyotrophic lateral sclerosis patients using disease progression patterns. Nature Communications, 15(1), 5717.
-
Soares, D. F., Henriques, R., Gromicho, M., de Carvalho, M., & Madeira, S. C. (2023). Triclustering-based classification of longitudinal data for prognostic prediction: targeting relevant clinical endpoints in amyotrophic lateral sclerosis. Scientific Reports, 13(1), 6182.
-
Tavazzi, E., Longato, E., Vettoretti, M., Aidos, H., Trescato, I., Roversi, C., Martins, A. S., Castanho, E. N., Branco, R., Soares, D. F., & others. (2023). Artificial intelligence and statistical methods for stratification and prediction of progression in amyotrophic lateral sclerosis: A systematic review. Artificial Intelligence in Medicine, 142, 102588.
-
Soares, D. F., Henriques, R., Gromicho, M., de Carvalho, M., & Madeira, S. C. (2022). Learning prognostic models using a mixture of biclustering and triclustering: Predicting the need for non-invasive ventilation in Amyotrophic Lateral Sclerosis. Journal of Biomedical Informatics, 134, 104172.
Conference Proceedings
-
Martins, A., Amaral, D., Castanho, E., Soares, D., Branco, R., Madeira, S., & Aidos, H. (2024). Predicting the functional rating scale and self-assessment status of ALS patients with sensor data.
-
Branco, R., Soares, D. F., Martins, A. S., Valente, J. B., Castanho, E. N., Madeira, S. C., & Aidos, H. (2023). Investigating the Impact of Environmental Data on ALS Prognosis with Survival Analysis. CLEF (Working Notes), 1186–1198.
-
Branco, R., Valente, J. B., Martins, A. S., Soares, D. F., Castanho, E. N., Madeira, S. C., & Aidos, H. (2023). Survival Analysis for Multiple Sclerosis: Predicting Risk of Disease Worsening. CLEF (Working Notes), 1199–1209.
-
Nunes, S., Sousa, R. T., Serrano, F., Branco, R., Soares, D. F., Martins, A. S., Auletta, E., Castanho, E. N., Madeira, S. C., Aidos, H., & others. (2022). Explaining Artificial Intelligence Predictions of Disease Progression with Semantic Similarity. CLEF (Working Notes), 1256–1268.
-
Branco, R., Soares, D. F., Martins, A. S., Auletta, E., Castanho, E. N., Nunes, S., Serrano, F., Sousa, R. T., Pesquita, C., Madeira, S. C., & others. (2022). Hierarchical Modelling for ALS Prognosis: Predicting the Progression Towards Critical Events. CLEF (Working Notes), 1211–1227.
-
Soares, D., Henriques, R., Gromicho, M., Pinto, S., de Carvalho, M., & Madeira, S. C. (2021). Towards triclustering-based classification of three-way clinical data: A case study on predicting non-invasive ventilation in als. Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020) 14, 112–122.